O'Grady Lab
  • Home
  • News and Events
  • People
    • Current Members
    • Undergraduate Research
    • Past Members
  • Research
  • Publications
  • Data
    • Mitochondrial Primers
    • Nuclear Primers
    • Accession Numbers
  • Photos
  • Courses
  • Educational Outreach
  • Links

Fungal Speciation

9/14/2012

0 Comments

 
How do new species form? This pervasive question in evolutionary biology has its roots in Darwin (and let’s not forget the common man’s evolutionist – Wallace) and natural history observation, but has flourished over the last couple of decades with modern molecular and computational techniques. Birds, fish, lizards and arthropods get most of the attention on this subject, while an incredibly diverse member of the eukaryotes, the fungi, has received very little. 

How diverse are the fungi? Educated guesses are variable, and currently range between 1.5 million and 5.1 million. With all that diversity, and so many examples of fungi that intersect with our lives (for some great stories on this, see the Cornell Mushroom Blog) it is incredible how little attention they have received as the subjects of speciation studies. Why? I could chalk it up to the charismatic macrofauna effect, but c’mon – there is a fungus that turns ants into zombies! And then there’s another fungus that prevents that zombie fungus from spreading out of control! The world is full of charismatic fungi. Alternatively, the reason is that as humans we can more or less picture what an animal species is while this is not necessarily so with the fungi - we typically can’t even picture an entire fungal individual.

Among folks who study how species form, there has been a particular lot of attention focused on the role that adaptation to different resources plays in the fracturing of species. It is now being suggested that fungal plant pathogens are incredible model systems for this area of research, as one of the primary ways new plant fungal pathogen species may emerge is by shifting onto new host plant resources. This is interesting for at least two reasons. First, the large amount of theory and research that exists on speciation may be able to help guide plant pathogen researchers at understanding the internal factors controlling host switches in the fungal pathogens. Second, it points speciation researchers towards a myriad of new study systems on which experiments can be done. Tatiana Giraud and colleagues point out in a 2010 article that plant pathogens are full of characteristics that make them great for studying rapid ecological speciation (their hosts provide strong selection, they have lots of offspring which increases both their survival and mutation rate, they mate entirely within the host, they have only a few genes that control host specificity and they can clone themselves to keep themselves going for long periods between mating with another individual).

How rapid is rapid? In one example, a rust fungal species emerged by hybridization IN 1997 to infect a poplar tree that itself is a hybrid (Newcombe et al 2000). Wow! In another recent example, researchers studied a pathogen that infects green coffee berries, and found that it diverged approximately 2200 yrs ago. Although ages longer than the first example, this is still very recent in the realm of speciation examples, and leads me to wonder what else is going on out there in this fast-paced world of fungal speciation. From the perspective of an insect researcher, where experiments can be done but lab rearing is tricky, this is fascinating stuff. Stay tuned, and especially to the Giraud Lab (Ecologie, Systematique et Evolution, Universite Paris-Sud) for more neat work in this area!

Kari Goodman

Newcombe, G, Stirling, B., McDonald, S., and Bradshaw, H.D., Jr. (2000) Melampsora x columbiana, a natural hybrid of M. medusae and M. occidentalis.  Mycological Research 104(3): 261-274.
0 Comments



Leave a Reply.

    Patrick

    Professor
    Cornell University

    Archives

    April 2018
    March 2018
    August 2017
    March 2017
    January 2017
    September 2015
    May 2015
    March 2015
    January 2015
    October 2014
    April 2014
    March 2014
    February 2014
    September 2013
    May 2013
    April 2013
    February 2013
    January 2013
    November 2012
    October 2012
    September 2012
    August 2012
    July 2012
    June 2012
    May 2012
    January 2012
    November 2011
    October 2011
    May 2011
    February 2011

    Categories

    All
    1090
    1091
    Alumni
    Aquatic Insects
    Arizona
    Asteia
    Barcoding
    Bennett
    Blog
    Career
    Celebrations
    Chelsea
    Climate Change
    Cornell
    Craft
    Dicranota
    Dolichopodidae
    Drosophila
    Ephydra
    Ephydridae
    Field Work
    Funding
    Goodman
    Hawaiian Drosophila
    Keys
    Kidwell
    Lapoint
    Limonia
    Magnacca
    Marrack
    Montana
    Nesophrosyne
    New Species
    Ogrady
    Ort
    Paceyn
    Pak
    Panbiogeography
    Pediciidae
    Peterson
    Phylogenetic Methods
    Publications
    Readings
    Rhaphidolabis
    Scaptomyza
    Scatella
    Schedule
    Stauffer
    Sylvain
    Talks
    Taxonomy
    Tipula
    Undergraduates
    Unicorns
    Whiteman Lab
    Wojciechowski
    Wolbachia
    Wyoming
    Yeast And Fungi

    RSS Feed