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ABSTRACT

Aim Understanding how ecological and evolutionary processes together deter-
mine patterns of biodiversity remains a central aim in biology. Guided by ecological
theory, we use data from multiple arthropod lineages across the Hawaiian archi-
pelago to explore the interplay between ecological (population dynamics, dispersal,
trophic interactions) and evolutionary (genetic structuring, adaptation, speciation,
extinction) processes. Our goal is to show how communities develop from the
dynamic feedbacks that operate at different temporal and spatial scales.

Location The Hawaiian islands (19–22° N, 155–160° W).

Methods We synthesize genetic data from selected arthropods across the Hawai-
ian archipelago to determine the relative role of dispersal and in situ differentiation
across the island chronosequence. From four sites on three high islands with geo-
logical ages ranging from < 1 Ma to 5 Ma, we also generate ecological metrics on
plant–herbivore bipartite networks drawn from the literature. We compare the
structure of these networks with predictions derived from the principle of
maximum information entropy.

Results From the perspective of the island chronosequence we show that species
at lower trophic levels develop population genetic structure at smaller temporal and
spatial scales than species at higher trophic levels. Network nestedness decreases
while modularity increases with habitat age. Single-island endemics exhibit more
specialization than broadly distributed species, but both show the least specializa-
tion in communities on middle-aged substrates. Plant–herbivore networks also
show the least deviation from theoretical predictions in middle-aged communities.

Main conclusions The application of ecological theory to island
chronosequences can illuminate feedbacks between ecological and evolutionary
processes in community assembly. We show how patterns of population genetic
structure, decreasing network nestedness, increasing network modularity and
increased specialization shift from early assembly driven by immigration, to in situ
diversification after > 1 Myr. Herbivore–plant communities only transiently
achieve statistical steady state during assembly, presumably due to incomplete
assembly from dispersal in the early stages, and the increasing influence of island
ontogeny on older islands.
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INTRODUCTION

Current biodiversity is a product of speciation, extinction and

dispersal, contingent on the ecological interactions of organisms

with their biotic and abiotic environment. The evolutionary

history leading to the assembly of any given ecological commu-

nity must in some way shape current ecological assemblages.

However, because the processes of evolution and ecology occur

on different temporal and spatial scales, disentangling the rela-

tive influence of local ecological mechanisms from historical

evolutionary processes on patterns of community structure

remains a central challenge (Ricklefs, 2004).

The evolutionary processes of speciation and extinction are

classically viewed as constraints on regional species pools, occur-

ring in a manner largely removed from local ecology (Hubbell,

2001; Cavender-Bares et al., 2009; Wiens, 2011). Conversely,

ecological mechanisms tend to be viewed as packing standing

diversity into local communities through consumption, compe-

tition, facilitation and, more recently, neutral ecological drift

(Hubbell, 2001; Tilman, 2004; Bascompte & Jordano, 2007;

Borer et al., 2014). While recent theoretical advances have pro-

vided greater insight into ecological drift (Hubbell, 2001;

Rosindell & Phillimore, 2011), niche partitioning (Tilman,

2004), competition, predation (Borer et al., 2014) and species

interaction networks (Williams & Martinez, 2000; Brose et al.,

2006), these insights typically do not contain realistic evolution-

ary assumptions (Ricklefs, 2006) or ignore them entirely.

Insights into the genetic, biogeographic and selective mecha-

nisms leading to diversification have also emerged based on

inference from current patterns of species, genetic or

phylogenetic diversity (e.g. Wiens, 2011; Jetz et al., 2012).

However, it is not possible to use current static patterns to infer

the temporal dynamics of either the evolutionary mechanisms

or their ecological consequences, nor can we understand what

constitutes meaningful change in a system without a baseline for

comparison. Here we show how testing idealized ecological

theories [such as the unified neutral theory (Hubbell, 2001) or

the maximum entropy theory of ecology (Harte, 2011)] on

archipelagos composed of islands formed in a discrete geological

sequence can help identify the shifting balance and feedback

between fast-acting, local ‘ecological’ mechanisms, and long-

term, large-scale evolutionary processes in determining ecologi-

cal community structure. Islands having different ages of

formation, along with discrete volcanoes within islands, provide

the opportunity to study diversification of species and the

assembly of communities in different stages. Ecological theory

provides an idealized ‘null’ baseline against which to compare

observed patterns.

Hotspot oceanic archipelagos as model systems

Hotspot oceanic islands are opportune model systems for study-

ing the interplay of local ecological mechanisms and the evolu-

tionary drivers of biodiversity patterns. Due to their sequential

formation as the tectonic plate moves over a volcanic hotspot,

such island systems offer a range of spatial and temporal scales

over which to analyse the outcomes of ecological and evolution-

ary processes (Warren et al., 2015). While many archipelagos

around the world share these biotic and geological properties,

the Hawaiian archipelago provides a particularly useful system

for study because its linear geological chronology (Price &

Clague, 2002), ecosystem developmental trajectories (Vitousek,

2004) and phylogeographic patterns of biodiversity are each well

characterized (Wagner & Funk, 1995). Moreover, studies of

species diversity across the islands have revealed patterns that

are non-uniform across the island chronosequence with marked

differences among lineages (e.g. Gruner, 2007; Gillespie &

Baldwin, 2009) that can be used to test for biologically mean-

ingful differences among lineages that might drive their dispar-

ate diversification patterns.

Development of genetic structure

High levels of dispersal and associated gene flow among local-

ities limit the extent to which populations can diverge geneti-

cally. However, when gene flow is low, distinct populations in

different localities are free to diverge through local selective

pressures and drift, which can lead to diversification (Slatkin,

1987) Thus, the magnitude of genetic connectivity among

populations provides a measure of the relative importance of

dispersal-driven assembly (dictated by processes removed from

the local setting) in contrast to assembly by local (in situ) diver-

sification in determining community composition. Using the

chronosequence of the Hawaiian archipelago, we can analyse

populations from multiple sets of taxa across trophic guilds

occurring in geological contexts from young to old. We predict

that dispersal-driven (ecological) processes will dominate in

community assembly in young habitats, with the importance of

in situ (evolutionary) processes increasing with habitat age. If

evolutionary processes are not important, we predict that com-

munities should reach a statistical steady state through ecologi-

cal processes alone (Harte, 2011). If, as we expect, evolutionary

processes become increasingly important in community assem-

bly over time, we would expect to find associated deviations

from an ecological null model of community assembly, provided

by idealized ecological theory. Differences in population struc-

ture among taxa or trophic groups could indicate whether suf-

ficient time has passed along the chronosequence for the group

of interest to experience significant evolutionary pressures.

Macroecological metrics and idealized
ecological theory

By their nature, unified theories of biodiversity (e.g. Hubbell,

2001; Harte, 2011) provide a simplified view of ecology, but

deviations from theory can provide insights into which particu-

lar ecological patterns require additional biological mechanisms

for their explanation (Harte, 2011). The maximum entropy

theory of ecology (METE; Harte, 2011) in particular provides

predictions of species abundance distributions, species–area

relationships and metabolic rate and network linkage distribu-

tions for idealized ecological communities in which the
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behaviour of a system is governed by a simple set of state vari-

ables. The principle of maximum information entropy

(MaxEnt), from which the METE is derived, is an established

inference procedure that has yielded accurate predictions of

diverse patterns in fields as varied as thermodynamics (Jaynes,

1957), economics (Golan et al., 1996), forensics (Roussev, 2010),

imaging technologies (Gull & Newton, 1986) and, more

recently, ecology (e.g. Phillips et al., 2006; Dewar & Porté, 2008;

Harte, 2011). MaxEnt works by seeking the least-biased predic-

tion of a distribution of interest (e.g. the distribution molecular

velocities in the case of thermodynamics or of species abun-

dances in the case of ecology) while constraining that prediction

to be consistent with state variables describing the macroscopic

attributes of the system (e.g. temperature or the total number of

species and individuals). These are the most ignorant possible

predictions about the system. Thus, studying the unique eco-

logical conditions and evolutionary histories of real-world

systems that deviate from the conditions predicted from max-

imizing information entropy can provide insights into the pro-

cesses driving ecological systems away from the statistical steady

state (Harte, 2011).

Ecological networks are complex systems forming hierarchi-

cal structures to which the principle of MaxEnt has recently

been applied (Williams, 2010; Harte, 2011) and are a prime

study focus because networks of interacting species embody

both the ecology of trophic links and evolutionary processes

such as co-evolution (Bascompte & Jordano, 2007; Donatti

et al., 2011; Nuismer et al., 2013; Thompson et al., 2013). Thus

they present an opportune starting place to study ecological and

evolutionary feedbacks. The distribution of linkages in ecologi-

cal networks can test whether plant–animal interaction net-

works assemble neutrally or through deterministic processes

such as co-evolution of traits involved in foraging (Vázquez

et al., 2005). Analysis of other network metrics such as modu-

larity (the degree to which species interact in semi-autonomous

modules) and nestedness (the degree of asymmetry in interac-

tion between specialists and generalists) can further illuminate

the underlying eco-evolutionary processes driving patterns of

species interactions (Bascompte & Jordano, 2007; Donatti et al.,

2011; Nuismer et al., 2013). In nested networks, species with

fewer interactions (i.e. more specialized species) will interact

with a subset of the species with which generalists interact. In

this way interaction nestedness is mathematically equivalent to

island nestedness (in which islands that are less species rich are

subsets of islands that are more species rich). However, we only

consider network nestedness here.

To gain insights into community assembly as it happens, we

propose an integrative framework that harnesses advances in

both evolutionary and ecological theory, placed in the context of

age-structured archipelagos. Mechanistically simplified ecologi-

cal theories such as the METE (Harte, 2011) can be used as

powerful null models; deviations from theoretical expectations

can flag biological phenomena that warrant further study. Here

we demonstrate how community-level data from age-structured

island systems, combined with population genetic and

phylogenetic data, can test the extent to which the evolutionary

histories behind such communities drive their deviation from

theoretical expectations. We provide an initial test of this

concept using a synthesis of published data on arthropod lin-

eages in the Hawaiian islands. We provide metrics of ecological

and evolutionary dynamics across communities from settings

that range in geological age from 500 years to 5 Ma. We estimate

taxon-specific timelines for the development of population

genetic structure for both herbivores and predators and couple

these results with macroecological measures of community

structure, using predictions from statistical steady-state and eco-

logical network theory to provide insights into changes in com-

munity structure over the extended timeframe provided by the

island chronosequence.

METHODS

Dispersal-driven processes to in situ differentiation
across the island chronosequence

To evaluate the balance between regional immigration and the

potential for local differentiation, we measured how molecular

variation is partitioned among populations within species

across locations of known substrate age on the islands of Hawaii

and Maui (Fig. 1). We compiled published [DNA sequences,

amplified fragment length polymorphism (AFLPs) and

allozymes] and new data sets for a diversity of native Hawaiian

arthropod groups that represent a spectrum of trophic levels

(Table 1). New sequences were included for sap-feeding

Hemiptera group Nesosydne planthoppers [COI; data generated

following the protocols in Goodman et al. (2012); GenBank

accession numbers: KT023113–KT023179] and Trioza psyllids

[COI, cytB; data generated following protocols in Percy (2003);

GenBank accession numbers: KR108061–KR108144]. Samples

were from the focal sites described below for the ecological

analysis, as well as from other locations across Hawaii and Maui.

These data were used to provide an estimate of how arthropod

populations have accumulated genetic population structure

within the focal sites of different geological age.

We used analysis of molecular variance (AMOVA) to examine

how genetic variation is partitioned at two scales of population

structure: among sites within volcanoes and among volcanoes

on both the island of Hawaii and the islands of the Maui Nui

complex (Maui, Molokai, Lanai). All analyses of allozyme and

DNA sequence data were performed in Arlequin v.3.5

(Excoffier & Lischer, 2010) using the AMOVA procedure to

compute FST, a measure of genetic variance, or, where possible,

ΦST, an FST analogue that incorporates genetic sequence infor-

mation. The Laupala AFLP data were analysed using tfpga v.1.3

(Miller, 1997), using the same hierarchical approach of compar-

ing within and among volcanoes as described above. To provide

a temporal framework for the population differentiation analy-

sis we assembled divergence-dating information from the litera-

ture for as many of the taxa as possible.

To explicitly test the association between landscape age and

the potential for in situ genetic divergence we analysed how

within-site FST varies with the geological age of volcanoes on the

Community assembly on isolated islands
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islands of Hawaii and Maui Nui. For each volcano we calculated

FST or ΦST (Excoffier & Lischer, 2010) for each taxon among sites

within volcanoes. This analysis assumes that volcano age paral-

lels habitat age, allowing more or less time for the presence of the

populations.

Ecological metrics across the island chronosequence

To investigate how ecological patterns change as communities

age, we selected four focal sites across the chronosequence and

island ages (two on the island of Hawaii, one on Maui and one

on Kauai; Fig. 1) of approximately 12 km2 (each was defined as

a point with a 2-km radius buffer). Focal sites were selected to

have similar forest composition (dominated by Metrosideros

polymorpha; Myrtaceae), elevation (1100–1400 m) and rainfall

(mean annual precipitation 2000–3000 mm). We then con-

structed bipartite interaction networks between native herbivo-

rous Hemiptera species and native plants at each of the study

sites. Bipartite networks describe the topology of ecological

interactions between two guilds of organisms (e.g. herbivores

and their plant hosts). Quantitative information on the relative

importance of interaction links can be incorporated into

network analyses (Vázquez et al., 2009). However, currently

available data are restricted to binary networks: those that

describe the potential for interaction between any two species

but not the relative frequency of that interaction to each species.

We compiled species lists of all native herbivorous Hemiptera

for each focal site from published species accounts (see Table S1

in the Supporting Information for a full list). Species accounts

and other published sources were used to determine the pres-

ence, probable presence, or probable absence of each species at

each of our four focal sites. A documented presence was defined

as a known specimen collected at the focal site; a probable pres-

ence was defined as a species whose abiotic tolerances and

known geographic range overlap with a focal site but no known

specimen exists confirming its presence. Probable absence was

assumed when the criteria for presence or for probable presence

are not met. Two sets of species lists for each focal site were

compiled: a conservative data set composed of only documented

presence occurrences and a less conservative data set that also

included probable presences.

Host plants for each species of Hemiptera were determined

from published species accounts. Data on host plant use at each

specific site were not available so we assumed that if a known

host plant were present at a site it would eventually be used. Host

plant occurrence in the focal sites was determined using distri-

bution models for 1158 species of Hawaiian plants (Price et al.,

2012). Each focal site was spatially joined in a geographic infor-

mation system with all coincident plant distribution models that

fell within its boundaries. Two sets of resulting focal site-specific

networks were constructed: one using the conservative data set

of Hemiptera species presences and the other using the less

conservative data set.

We hypothesized that potentially complex evolutionary feed-

backs contributing to community assembly should result in

departures from the predicted ecological statistical steady state.

We used the METE (Williams, 2010; Harte, 2011) to compute

the statistical steady state for the distribution of the number of

host plants used by each Hemiptera species (hereafter referred to

as degree distribution). To evaluate how well the METE predicts

the data we simulated METE-conforming communities having

the same number of species and links as observed. We then

calculated the log-likelihood of each simulated data set and

compared the resultant distribution of log-likelihoods under the

hypothesis that the METE is true with the observed log-

likelihood. This comparison is identical in approach to a z-score

test using a Monte Carlo simulation to estimate the sampling

distribution of log-likelihoods. R scripts (v.3.1.1; R Core Team,

2014) used for METE estimation and Monte Carlo methods are

available in Appendix 1.

To investigate how speciation may in part drive network pat-

terns and deviations from those predicted by idealized ecologi-

cal theory, we analysed the number of links assigned to each

Hemiptera species (the degree distribution) separately for
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Figure 1 Map of substrate age (millions
of years, My) of the islands of Kauai,
Maui and Hawaii. Colours correspond to
substrate age from young (light) to old
(dark). Focal sites are shown as black
circles (on Hawaii, Kohala is in the
north, Kilauea in the south) while
sampling sites for genetic data are
represented by grey circles.
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single-island endemics (those species found on only one island

and thus probably derived from in situ diversification) versus

multi-island endemics (those species found on multiple

islands). Although multiple processes can lead to a species being

a single-island endemic (Whittaker et al., 2008), such taxa

provide a proxy for how much speciation occurs within islands.

To compare species degree distributions between single-island

endemics and multi-island endemics across sites of different

ages we conducted a generalized linear model with binomial

error, treating site identity as a categorical predictor. Binomial

errors effectively account for network size due to the bounded

support of the binomial distribution.

To understand how other network properties change with age

of the ecosystem substrate, we calculated two widely used

descriptive network metrics across sites – nestedness and modu-

larity. Nestedness describes the degree of asymmetry of species

interactions connecting specialists and generalists (Bascompte

& Jordano, 2007; Ulrich et al., 2009). We calculated nestedness

using the NODF metric (Almeida-Neto et al., 2008) as imple-

mented in the R package vegan (Oksanen et al., 2013) and

modularity using a variety of algorithms implemented in the R

package igraph (Csardi & Nepusz, 2006). These metrics are not

directly comparable across networks of different size and

connectance (Ulrich et al., 2009), so for each metric in each

network we calculate z-scores using a null model that

randomizes network structure while maintaining certain aggre-

gate network properties (Ulrich et al., 2009). These z-scores are

calculated as the difference between the observed network

metric minus the mean of the null model divided by the null

model standard deviation, or x xobs sim simSD−( ) . Because

z-scores can be highly sensitive to the choice of null model

(Ulrich et al., 2009) we implemented both a probabilistic null

model (Bascompte & Jordano, 2007) and a null model that

strictly constrains the degree distributions of plants and herbi-

vores (Ulrich et al., 2009). The probabilistic null uses the fre-

quency of interactions as the probability that a randomized link

gets assigned to that cell in the interaction matrix (Bascompte &

Jordano, 2007); thus the probabilistic null constrains row and

column sums in probability but not absolutely.

RESULTS

Dispersal-driven processes to in situ differentiation
across the island chronosequence

The AMOVA revealed significant genetic population structure

from the smallest to the largest spatial scales examined, all

within a very recent timeframe. For mitochondrial loci, statisti-

cally significant molecular variation partitioned among sites

within volcanoes ranged from 0.037 to 0.92 and among volca-

noes from 0 to 0.30. Corresponding variation at multilocus

nuclear loci among sites within volcanoes ranged from 0.21 to

0.58 and among volcanoes from 0.04 to 0.34. Taxa in the

lower trophic levels (herbivorous sap-feeding Hemiptera:

planthoppers and psyllids) had as much or more molecular

variation partitioned at the among-site, within-volcano level

than the among-volcano level, while the predatory spiders were

less structured at localities within volcanoes compared with

among them (Table 1). The analysis of genetic population struc-

ture across the chronosequence of localities revealed a similar

pattern. The herbivores show high genetic population structure

among localities even on young volcanoes (Fig. 2). By contrast,

predatory spiders exhibited little genetic population structure

within sites on the same volcano; this was higher among volca-

noes, with values increasing with age across the chronosequence.

The observed levels of genetic divergence have evolved rapidly

in many cases. For example, for species from the island of Hawaii

for which phylogenetic data provide divergence times, estimates

of dates of species divergence range from 0.5–4 Ma, with addi-

tional within-species genetic divergence having developed sub-

sequently (Table 1). That some of these estimates are older than

the known age of the ‘Big Island’ suggests that genetic divergence

pre-dates their colonization to Hawaii, or alternatively that esti-

mates include sampling error. For the one species where popula-
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tion genetic data were used to estimate divergence times between

populations, herbivorous Nesosydne planthoppers, it was deter-

mined that populations diverged as little as 2600 years ago

(Goodman et al., 2012) (Table 1).

Ecological metrics across the island chronosequence

The degree distribution of Hemiptera species varied across the

chronosequence with both the youngest and oldest sites deviat-

ing most from the statistical steady-state maximum entropy

predictions (Fig. 3). In the intermediate-aged site of Kohala,

deviations are not significantly different from the predictions of

maximum entropy.

The generalized linear model revealed significant differences

between the degree distributions of single-island endemics

(species whose distributions are restricted to only one island)

versus archipelagic endemics that are found across multiple

islands (Fig. 3). Single-island endemics show significantly lower

degree distributions overall (i.e. more specialization) compared

with more generalist species found across multiple islands.

Furthermore, single-island endemics use more host plant

species on the intermediate-aged Maui site. The slightly younger

Kohala shows increased generalization for both single-island

endemics and archipelago endemics. However, when consider-

ing the degree distribution defined by trophic links to plant

genera instead of plant species, the pattern of increased gener-

alization holds for Kohala, but endemics on Maui no longer

show a difference in their degree distributions from other island

endemics. This change in pattern suggests that increased gener-

ality of Maui endemics may be driven by increased plant species

diversity within genera on that island.

Network nestedness decreased with habitat age while modu-

larity increased (Fig. 4). This trend was recovered in networks

constructed from both more and less stringent geographic cri-

teria (Fig. S3). Choice of null model changed the magnitude of

modularity and the sign of nestedness z-scores; however, the

relative pattern of decreasing nestedness and increasing modu-

larity remained across the different null models used to stand-

ardize network metrics (Fig. S2). The patterns were also robust

to sampling intensity, as demonstrated by a rarefaction analysis

(Fig. S4).

DISCUSSION

Development of genetic population structure at
different trophic levels

The analysis of available genetic data presented here indicates

that divergence is occurring within the islands at small spatial

scales and over short time periods (Table 1, Fig. 2). Further-

more, the scale of population structure varies with trophic posi-

tion, with structure developing in sap-feeding herbivore lineages

at smaller scales (and hence shorter timeframes in the context of

the chronosequence) compared with detritivorous crickets and

predatory spiders (Table 1, Fig. 2). Structure within species may

allow populations to take independent evolutionary trajectories,
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especially when aided by other evolutionary processes acting

differentially across species geographic ranges. A variety of

factors have been associated with the genetic divergence of

populations and species in the lineages described here, including

combinations of genetic drift associated with geographic isola-

tion (Percy, 2003; Mendelson & Shaw, 2005; O’Grady et al.,

2011; Goodman et al., 2012), adaptation associated with com-

petition, predation and mutualism (Gillespie, 2004; Roderick &

Percy, 2008; Brewer et al., 2015) and sexual signalling

(Mendelson & Shaw, 2005; Percy et al., 2006; Magnacca et al.,

2008; Goodman et al., 2015).

The Nesosydne planthoppers provide evidence that some

period of geographic isolation preceded the divergence of sexual

signals (Goodman et al., 2012, 2015). Shifts in plant host use are

also associated with diversification in this group (Roderick &

Percy, 2008). In a phylogenetic study of a radiation of sap-

feeding Nesophrosyne (Cicadellidae) leafhoppers, species diver-

gence was associated with host plant specialization between 1

and 5 Ma, but only with geography on the younger island

(Bennett & O’Grady, 2013). Our network analysis shows that

specialization and modularity are more pronounced on Maui

than on Hawaii (Figs 3 & 4), consistent with the phylogenetic

results from Nesophrosyne. Available dating analyses of other

arthropod taxa indicate that population genetic structure can

develop in much less than 1 Myr (Table 1), and suggest that

landscape fragmentation processes (e.g. lava flows) may domi-

nate the earliest stages of diversification across taxa in the

Hawaiian islands. Other taxa at low trophic levels, such as the

herbivorous Trioza psyllids, detritivorous Laupala crickets and

fungivorous Drosophila, show similar signals of geographic iso-

lation combined with ecological and sexual processes driving

genetic divergence and diversification across sites as young as

those on Hawaii (Percy, 2003; Mendelson & Shaw, 2005; Percy

et al., 2006; Magnacca et al., 2008; O’Grady et al., 2011). By con-

trast, spiders, which are predatory, develop genetic discontinu-

ities at larger spatial and temporal scales with a strong signature

of increasing structure with age of the chronosequence

(Roderick et al., 2012; Table 1). Further work is needed to assess

the generality of this pattern of slower genetic differentiation in

predators compared with herbivores.

Macroecological metrics: network structure and
steady state

Across the Hawaiian archipelago, nestedness appears to decrease

generally with site age, and is highest on the geologically young-

est volcano, Kilauea. High nestedness on Kilauea may arise with

high immigration of new species with high probabilities to eat

or be eaten by the generalist species already present at the site

(Bascompte & Jordano, 2007). However, despite high nestedness

on Kilauea, and thus the potential for neutral colonization-

driven assembly, this site did not conform to the statistical

steady-state predication of the METE. The observed deviations

from the METE at Kilauea appear to be largely driven by a

surplus of singleton links (Fig. 3), which may reflect a state of

‘incomplete’ assembly, possibly by lower species richness of the

plant and herbivore biotas. Conversely, at Kohala, at intermedi-

ate age (150 ka), observations were not significantly different

from the METE predictions. We posit that the reason why theo-

retical predictions fit Kohala so well is that the site has had

sufficient time to undergo ecological succession and thus arrive

at a statistical steady state, but is still too young to be affected by

ecological specialization and rapid in situ diversification associ-

ated with host plants on older islands.

Interestingly, the communities on the older Maui and Kauai

sites show strong deviations from the METE expectations

(Fig. 4). The METE is agnostic about which mechanisms deter-

mine the values of the state variables that lead to its

macroecological predictions (Harte, 2011). It does not account

for the evolutionary history of biological systems. Thus, one

possible explanation for the strong deviations from the METE

expectations, compared with observations at our intermediate-

aged site (Kohala), is that while the ages of Maui and Kauai are

sufficient for evolutionary assembly driven by specialization and

diversification on host plants, the older age of these islands may

have led to range contractions and possibly extinction of plant

species on the oldest island of Kauai (Whittaker et al., 2008).

Our results show decreased nestedness and increased modu-

larity on Maui and Kauai. Co-evolution between interacting

species should lead to greater modularity (Donatti et al., 2011;

Nuismer et al., 2013). However, the influence of certain network

properties, such as nestedness, on stability is still unknown, and

so theoretical predictions of how network properties should

change over evolutionary time, generally, are lacking. Theoreti-

cal and empirical studies have suggested that nestedness may or

may not promote stability (Allesina & Tang, 2012; Suweis et al.,

2014). Furthermore, almost all studies of food webs have

focused primarily on single or short ecological time spans of

network development that do not span as much evolutionary

time as is included here (e.g. Albrecht et al., 2010). Food webs
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are dynamic emergent entities, with broad topological charac-

teristics that may change dramatically over time (e.g. Yeakel

et al., 2013). To our knowledge, our study represents the first to

evaluate network topology over larger temporal scales, and we

argue that age-structured landscapes such as the Hawaiian

archipelago are promising for resolving long-standing debates

on the causes and consequences of network properties such as

nestedness.

We found that single-island endemics were always more spe-

cialized than multiple-island endemics. Although dietary

breadth has been positively associated with geographic range

size (Lewinsohn et al., 2005), the direction of causality is unclear

(Slatyer et al., 2013): while dietary breadth may allow some

species to colonize other islands, it may also be driven by adap-

tation to exploit locally abundant hosts across a large range.

Nevertheless, both scenarios are consistent with the hypothesis

that in situ formation of single-island endemics may be the

product of co-evolution and specialization. At the Kohala site,

which showed the best fit to maximum entropy theory, single-

island endemic and multiple-island endemic species alike

showed increased generalization (i.e. a higher degree, or more

links; Fig 3), while at the youngest site of Kilauea, specialist

single-island endemics may be limited by low plant diversity and

thus appear more specialized (Fig. 3). Conversely at the oldest

site on Kauai, where plant diversity is high (Kitayama &

Mueller-Dombois, 1995), single-island endemics are again asso-

ciated with decreased degree and thus genuine specialization

(Fig. 3). On Maui, single-island endemics show statistically sig-

nificant increases in generalization, but this pattern disappears

when analysing the data at the resolution of plant genera, thus

suggesting that Hemiptera species endemic to Maui may benefit

from the diversification of plant species within genera.

Future research

The data and analyses presented here describing insect and plant

communities across a chronosequence of habitats in Hawaii

generate testable hypotheses concerning the relative importance

of ecological and evolutionary processes in community assem-

bly. Our work to date suggests the overarching hypothesis that

ecological processes dominate community assembly in younger

environments, with evolutionary processes becoming increas-

ingly important as communities age. We can also make predic-

tions about the sequence of community assembly based on

proposed mechanisms.

In younger communities we predict characteristics of ecologi-

cal assembly, with species resembling random samples through

immigration from regional source pools. Thus, metrics describ-

ing these communities will approach expectations of an ecologi-

cal statistical steady state. An exception will be communities that

are still undergoing the initial stages of primary succession,

which will change rapidly through time and represent non-

random samples of source pools. We also predict that these

communities will exhibit a nested network structure, assuming

new species will eat or be eaten by the generalist species already

present in the community, as suggested by previous work on

nestedness (Bascompte & Jordano, 2007) and by our finding

that widespread species tend to be generalists (Fig. 4).

Following the same logic, in older communities we expect to

see characteristics of evolutionary assembly, dominated by pro-

cesses such as adaptive exploration of niche space, giving way to

speciation. Thus, we predict increasing specialization and

modularity with time (Bascompte & Jordano, 2007; Donatti

et al., 2011; Nuismer et al., 2013) as reflected by age across the

chronosequence.

Ecological data: assembly of species
into communities

In order to build a more rigorous understanding of the assembly

process in both younger and older communities, fine-grained

sampling of all macroscopic arthropod taxa is needed from a

large number of sites across the island chronosequence. This will

allow an assessment of changes in overall species composition

and diversity across all players in the time-calibrated landscape

(Gruner, 2007). Such data will allow us to test entire arthropod

communities for deviations from METE predictions of statisti-

cal steady state (Harte, 2011) across substrates of different ages.

For example, predators, whose assemblages are likely to be more

dominated by immigration and ecological assembly (Fig. 2),

may never show strong deviations from METE predictions,

whereas herbivores could show increasing deviation with age in

agreement with the network results of this paper (Fig. 3).

Evolutionary data: diversification within species

The current study demonstrates that taxa from different

trophic guilds differ in the scale at which differentiation occurs

and highlights the importance of fragmentation of the land-

scape in facilitating differentiation. Future work will be aimed

at gathering data for additional focal taxa within this system,

spanning different trophic levels. We will use these data to

understand taxonomic and functional differences in the rate of

differentiation, to assess the roles of genetic fusion and fission

and the spatial scale over which they are important in fostering

diversification (Gillespie & Roderick, 2014), and to detail the

relative rates of speciation and extinction across the island

chronosequence.

CONCLUSIONS

We have shown how a chronosequence can be used to under-

stand biodiversity dynamics across an ecological–evolutionary

continuum. Focusing on entire communities of arthropods in

the Hawaiian islands allows us to incorporate predictions from

idealized ecological theories to understand eco-evolutionary

feedbacks and generate predictions about how entire commu-

nities develop over an extended time. Such an approach may

prove fruitful for investigating the separate and interactive roles

of ecological and evolutionary drivers of community assembly

using age-structured systems as a simplified natural experiment,

as exemplified by oceanic archipelagos.

Community assembly on isolated islands
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We have demonstrated how taxa in the lower trophic levels

developed genetic structure even in the youngest habitats of the

observed chronosequence and at smaller spatial scales (Table 1,

Fig. 2). Thus, lower trophic levels are affected by in situ processes

of diversification very early in the chronosequence, compared

with higher trophic levels, though in situ processes become more

important over time in the latter. Network nestedness decreased

while modularity increased with age (Fig. 4), again indicating a

possible shift from assembly driven by ex situ immigration early

on to one based on in situ diversification, such as in

co-diversification of insect herbivores with host plants

(Bascompte & Jordano, 2007; Donatti et al., 2011). That single-

island endemics (probably the product of in situ diversification)

show more specialization at older sites than more broadly dis-

tributed species (those taxa more likely to be initial colonists;

Fig. 3) also supports this hypothesis.

This study provides a framework for using chronologically

arranged oceanic island systems to examine the interplay

between evolutionary and ecological processes in shaping bio-

diversity. Our initial results provide a clear hypothesis that eco-

logical processes dominate community assembly in younger

environments, with evolutionary processes becoming more

important as communities age. We demonstrate how this

approach can provide insights into the development of commu-

nities over ecological–evolutionary time, and the dynamic feed-

backs involved in assembly.
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