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Abstract

The Hawaiian Drosophilidae radiation is an ecologically and morphologically

diverse clade of almost 700 described species. A phylogenetic approach is key to

understanding the evolutionary forces that have given rise to this diverse lineage.

Here we infer the phylogeny for the antopocerus,modified tarsus and ciliated tarsus

(AMC) clade, a lineage comprising 16% (91 of 687 species) of the described

Hawaiian Drosophilidae. To improve on previous analyses we constructed the

largest dataset to date for the AMC, including a matrix of 15 genes for 68 species.

Results strongly support most of the morphologically defined species groups as

monophyletic. We explore the correlation of increased diversity in biogeography,

sexual selection and ecology on the present day diversity seen in this lineage

using a combination of dating methods, rearing records, and distributional data.

Molecular dating analyses indicate that AMC lineage started diversifying about 4.4

million years ago, culminating in the present day AMC diversity. We do not find

evidence that ecological speciation or sexual selection played a part in generating

this diversity, but given the limited number of described larval substrates and

secondary sexual characters analyzed we can not rule these factors out entirely.

An increased rate of diversification in the AMC is found to overlap with the

emergence of multiple islands in the current chain of high islands, specifically

Oahu and Kauai.
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Introduction

Diversity in the Hawaiian Islands

The extreme isolation and varied ecological habitats present in the Hawaiian

Islands makes this archipelago home to high levels of endemism [1] and a model

system for studying diversification. Many large radiations are known from the

Hawaiian Islands, with well-known examples from plants [2, 3], vertebrates [4],

and invertebrates [5–8]. Price and Clague [9] reviewed Hawaiian lineages with

estimated colonization and divergence dates and found that most groups arrived

in Hawaii immediately following the formation of the current high islands,

approximately 5.2 million years ago (mya). Given its scope and relative recency,

understanding what influenced the current diversity in the Hawaiian Islands is a

challenge.

Only five endemic lineages are inferred to have colonized the Hawaiian

archipelago prior to the formation of the current high islands based on current

dated phylogenies [10–14]. The oldest and most diverse of these is the Hawaiian

Drosophilidae, a radiation derived from a common ancestor approximately

25 mya [10, 15, 16]. The Drosophilidae endemic to Hawaii have diversified into

two main clades, the Hawaiian Drosophila, or Idiomyia [17], and the genus

Scaptomyza (Figure 1). Combined, this lineage contains an estimated 1000

species, of which 687 are currently described [18]. The Hawaiian Drosophilidae

are well known for their ecological diversification in larval host use and lekking

sites [19–23] as well as their remarkable degree of morphological variation

[24, 25]. A number of forces, including ecological adaptation [22, 23], sexual

selection [26] and allopatric speciation [27], have been implicated in generating

the current high level of species diversity in the Hawaiian Drosophilidae.

The AMC as a model for Hawaiian diversity

This study focuses on the antopocerus, modified tarsus, and ciliated tarsus (AMC)

clade, a radiation of 91 described species of Hawaiian Drosophila, to explore the

factors that may have produced its current diversity. The AMC taxa are placed in

two lineages, the antopocerus species group, which includes the adunca,

diamphidiopoda and villosa subgroups, and the modified tarsus species group,

sensu O’Grady et al. [18], containing the bristle tarsus, ciliated tarsus, split tarsus,

and spoon tarsus subgroups. The morphological diversity found in species of the

AMC clade is striking. The antopocerus species group, once considered to belong

to a different genus, is comprised of large flies (up to 6 mm long) with long whip-

like antennae [28]. The species placed in the modified tarsus species group are

defined by secondary sexual characters on the foretarsi of the males which include

reduced numbers of segments, spoon-shaped structures, elongate cilia, or thick

clusters of setae [24, 29–31]. These tarsal modifications are used in mating

displays and behaviors [32]. Despite the extensive morphological diversity in this

lineage, the majority of the AMC clade with known ecological affinities utilize

decaying leaf matter as their primary oviposition substrate, a behavior that has
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caused some authors [19, 33] to refer to these species as the ‘‘leaf breeders.’’ In

addition to oviposition preference, members of this lineage share similar male

genitalia, internal anatomy and mating and lekking behaviors [28, 32, 34–37].

Our understanding of the phylogenetic relationships within species groups,

subgroups and lineages of the AMC clade, as well as its placement within the

Hawaiian Drosophila has changed over the past four decades (Fig. 1). The earliest

morphological analysis united the antopocerus species group and the modified

tarsus species group, and placed them sister to the modified mouthpart and picture

wing clades, with the ciliated tarsus species separate (Fig. 1A; [33]). Molecular

phylogenies have solid support for the monophyly of the AMC clade (Fig. 1B,

Fig. 1C), but lack either enough characters or taxa to adequately resolve

relationships within the group with support. A number of studies analyzed

representatives from one or two AMC species subgroups [23, 38, 39], but until

recently did not include enough exemplars for a rigorous assessment of the

monophyly within the AMC or relationships between the species groups therein.

In the largest analysis to include the AMC, O’Grady et al. [7] used four

mitochondrial loci to infer the phylogeny of the Hawaiian Drosophilidae. This

analysis included 54 AMC species, including multiple representatives from all the

major species groups and subgroups of this clade. The monophyly of the AMC

clade as a whole, as well as several lineages (e.g., spoon tarsus, antopocerus), were

well supported. Support for relationships between the AMC species groups were

not strong, perhaps owing to the limited number of loci used in this study.

Figure 1. Previous phylogenetic hypotheses regarding relationships within the Hawaiian Drosophila. Highlighted boxes include the placement of the
AMC clade. A) Relationships based on internal morphology [32]; B) combined nuclear and mitochondrial gene sequences for 9 representative AMC species
[38]; C) Mitochondrial sequence data for 55 AMC species [7].

doi:10.1371/journal.pone.0113227.g001
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Figure 2. Chronogram of the AMC estimated in BEAST. Node bars indicate age range. Alternating grey and white bands indicate time when an island
became aerial until next the island became aerial. Nodal support indicated at nodes as circles: Bayesian Posterior probabilities to the left and likelihood
bootstrap values to the right. Nodes without circles have both measures of support less than 0.9 PP and 70% BS. Node of rate increase indicated by D. To
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Objectives

Here we improve on previous phylogenetic studies to clarify the relationships

within the AMC clade and test the factors that may have driven its diversification.

The current study includes 68 AMC species, the largest number sampled to date

and over 75% of the described species diversity, as well as representative taxa from

all Hawaiian Drosophila species groups for outgroups. To assemble the largest

sequence matrix to date for this lineage we include sequence data from 10 nuclear

and five mitochondrial loci. We use these data to estimate divergence times in the

AMC clade and attempt to correlate rate and timing of diversification events

within the AMC with various factors implicated in generating diversity in the

Hawaiian Drosophila and other Hawaiian arthropod groups. The factors we test

include the importance of the Hawaiian Island geography, specifically the

progression rule [40, 41], habitat availability [4], ecological opportunity [42], and

the increase in diversity of sexually selected characters [43].

Methods

Sampling, DNA amplification and sequencing

Sixty-eight AMC clade species were collected from localities across the current

Hawaiian high islands (which include Hawaii, Maui, Molokai, Oahu, and Kauai)

(Table S1). Specimens from all five AMC lineages (antopocerus species group, split

tarsus, spoon tarsus, ciliated tarsus and bristle tarsus subgroups) were included.

Flies were swept from the leaf litter or aspirated directly from sponges soaked with

fermenting banana or mushroom baits. Permits for collecting Hawaiian

Drosophila were issued from the Hawaii Natural Area Reserves, Department of

Fish and Wildlife, and Hawaii Volcanoes National Park. Specimens were stored in

95% alcohol for subsequent identification and DNA extraction. Species

identifications were performed by the authors using published keys [28–31]. Of

the 68 AMC taxa we sampled, 59 were identified to species, comprising 64.8% of

the known diversity of this clade [18]. Another nine specimens described as

‘‘near’’ a described species (sp. nr.) were included in the analyses. While these

specimens were clearly closely allied with described species, they did not conform

to the morphological concept of the known species, and await description. Based

on the number of sp. nr. taxa collected in the past 10 years, we predict that there

may be more AMC species awaiting discovery and description. In spite of the

potential for undescribed species in the Hawaiian fauna, we feel our sampling

represents a significant portion of the known diversity and is representative of the

extant beta diversity at the level of species group and subgroup in the AMC clade.

Outgroup taxa were selected to test the monophyly of the AMC clade and to

facilitate dating analyses. Outgroups were chosen from across the three other

delimit between species previously defined as belonging to either the bristle or ciliated tarsus species group we have identified bristle tarsus species with an
asterisk next to their name, and all un-annotated species in the bristle and ciliated tarsus subgroup are ciliated tarsus species.

doi:10.1371/journal.pone.0113227.g002
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Hawaiian Drosophila clades [7]: haleakalae species group (D ochropleura),

modified mouthpart species group (D. nigrocirrus), picture wing clade (D.

grimshawi) and from the genus Scaptomyza (S. varipicta), the sister lineage of the

Hawaiian Drosophila.

Genomic DNA was extracted from individual flies using the Qiagen DNeasy

DNA extraction kit (Qiagen, Inc). The only departure from the standard protocol

was that whole individuals of rarely collected species were soaked in Proteinase K

and subsequently preserved as point mounted vouchers. Individuals were

Table 1. Gene details and diversity.

Locus Primer Label Primer Sequence (59–39) Locus Type Aligned Length PICa
Individuals
Sequenced

Kl-2 Kl2L TAATACAGAACGGTGGTATGGGTAT Y 571 63 60

kl2R GTTGCTTGGCTAATTCGTAAAGAGT

Fz4 Fz4L GCGTCTTTCTATTGCGCTACTAT X 974 89 55

Fz4R GCTTGTACGGACTGCTGATTATT

Snf snfL GAAGATGCGGGGCCARGCNTTYGT X 395 81 69

snfR GAACAGCATGGACAGCATCATYTCRTT

Yp1 YP1D-F GGACAGGATGAGGTNACCATCATTGT X 911 50 23

YP1D-R TGRTAGCTGTTCTGCTTCTGGGC

Yp2 YP2F CAGCAGCGTTACAATCTCCAGCC X 688 25 22

YP2R CCGAAGGGGCTCTTGGAGTTCAC

Pds5 Pds5L GGATACTTTGTGGACAATTCAGAGT autosomal 594 87 64

Pds5R AGATATTTCACGAACTCTTCAGCAC

Boss BossF1 ACCAGATGCCCTGGGGNGARAA autosomal 726 136 53

BossR1 TGGACAGGGAGCCGCKNARCCARTT

Ntid ntidF1 GGGCCGCATCTTCGARCAYAARTGG autosomal 567 98 69

ntidR1 TGGAGGGGTAGGTGTTCCARCARTA

Wee weeL GCCTGGGCCGAGGAYGAYCAYATG autosomal 297 40 56

weeR TCACGTGGCCCAGGTCNCCDATYTT

Ef1g EF1g26F GCTTWTGAGACCGCTGATGG autosomal 844 20 23

EF1g862R ATCTTRTCGAGACGCTGGAA

ND2 192 AGCTATTGGGTTCAGACCCC mito 523 132 69

732 GAAGTTTGGTTTAAACCTCC

ND4 FN4F GATACAGGAGCTTCTACATGAGC mito 687 79 23

FN4R GTTTGTGAAGGAGCATTAGG

COI 2183 CAACATTTATTTTGATTTTTTGG mito 831 201 71

3037 TYCATTGCACTAATCTGCCATATTAG

COII 3041 ATGGCAGATTAGTGCAATGG mito 765 167 70

3791 GTTTAAGAGACCAGTACTTG

16s 16sF CCGGTTTGAACTCAGATCACGT mito 511 27 69

16sR CGCCTGTTTAACAAAAACAT

Total 9884 1295

a) Number of parsimony informative characters.

doi:10.1371/journal.pone.0113227.t001
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macerated according to manufacturers protocol only when a series of conspecifics

from the same locality and date were available to preserve as vouchers in 95%

alcohol. All voucher material has been deposited into the B.P. Bishop Museum as

pinned material or remains as an ethanol voucher at the Essig Museum of

Entomology at UC Berkeley. For details on individuals contact the authors with

the appropriate barcodes from Table S1.

We sequenced a panel of 10 nuclear loci and five mitochondrial genes to infer

phylogenetic relationships among the AMC individuals in this study. The

mitochondrial loci nd2, nd4, co1, co2, and 16s were amplified using universal

mitochondrial primers [44]. The nuclear loci included were fz4, kl2, pds5 [45] snf,

wee, ntid, boss [46, 47], yp1, yp2 [23] and ef1g (Table 1). PCR products were

cleaned using a standard ExoSAP-IT protocol (USB). Cleaned products were

sequenced in both directions on an ABI 3730 capillary sequencer. Contigs were

assembled using Sequencher, ver. 4.7 (GeneCodes, Corp). Newly generated

sequences were deposited in Genbank. When available, additional sequences were

downloaded from Genbank for conspecific taxa (Table S1 and S2). Sequence

divergence between species was low and alignment was trivial. Sequences were

aligned to the orthologous D. grimshawi sequence in MacClade, ver. 4.06 [48]

using the default parameters in the Needleman-Wunsch algorithm [49] included

in this software package. Sequence alignments for protein coding loci were

translated to improve gap placement, and misalignments were identified when

coding regions were not in frame and corrected manually. Six to 15 genes were

sequenced for all taxa, with each species having an average of 11.2 genes

sequenced. The concatenated matrix is 67% complete and taxon coverage for each

gene matrix ranges from 31% of sampled taxa (yp2) to 99% of sampled taxa (co2).

The lowest taxa coverage per gene was for the genes yp1, yp2, ef1g and nd4. The 15

aligned genes comprised a matrix of 9884 base pairs, which includes gaps and

unknown bases (Table 1).

Phylogenetic Inference

Individual gene genealogies were estimated using Bayesian [50] and maximum

likelihood inference methods [51]. Datasets were partitioned by codon positions

(1st, 2nd, 3rd), non-coding regions (introns), and structural rRNA. The best-fit

substitution model for each partition in the Bayesian analyses was estimated via

the Akaike information criterion (AIC), implemented in MrModeltest, ver. 2.3

(Table S4) [52]. Individual Bayesian gene phylogenies were inferred by running

the analyses for one million generations, with sampling every 100 generations. We

examined the cumulative split frequencies plot calculated by AWTY [53] and

identified when the potential scale reduction factor (PSRF) approached 1 [54] to

assess the convergence of the Bayesian analyses. Appropriate levels of burn-in were

discarded – generally the first 10% to 20% of the sampled data. The GTRGAMMA

model was applied to each partition in the likelihood analysis [51]. Five hundred

bootstrap replicates were performed to assess support for the inferred relation-

ships. Each dataset was analyzed five times with different random starting seeds in
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RAxML to identify if significant changes in topology and support occurred

between runs. Both the Bayesian and maximum likelihood analyses were

performed on XSEDE, accessed through the CIPRES portal [55].

The entire dataset of 15 loci was concatenated and partitioned by gene and

codon position. This dataset was analyzed in both maximum likelihood [51] and

Bayesian [56] frameworks. We included all partitions from the genealogical

analyses for a total of 49 partitions. The GTRGAMMA was applied to all

partitions in the likelihood analysis. The concatenated dataset was analyzed ten

times with different random starting seeds in RAxML to identify if significant

changes in topology and support occurred between runs. One thousand bootstrap

replicates were performed to assess support for the inferred relationships.

BEAST v1.8.0 was used to simultaneously infer the topology and age of nodes in

the concatenated partitioned analysis [56]. An uncorrelated lognormal model of

rate variation and a birth-death speciation process for branching rates was used.

The analysis was run four times for 100 million generations, sampling every 10000

generations. Output files were combined using LogCombiner v1.8.0. Tracer v1.6

[57] was used to assess convergence and to identify if the posterior distribution of

all parameters had an effective sample size (ESS) of.200 and were therefore

adequately sampled.

Three nodes were calibrated using probabilistic priors. The oldest calibration

point is the split between Scaptomyza and the Hawaiian Drosophila. This node was

calibrated using a uniform prior ranging from 23.9 to 37.1 mya based on the

range of ages of this split inferred by prior studies [10, 15, 16]. We also used the

geologic history of the Hawaiian Islands to inform two node ages. Clades endemic

to the island of Hawaii are not expected to be older than that island [57], making

the most probable time of divergence between Hawaiian endemic lineages and

their sister species on the next nearest island, Maui, about 0.59 mya [4, 58]. Since

the lineage endemic to the island of Hawaii could have diverged before the

formation of Hawaii and sister species on Maui Nui went extinct, or the island of

Hawaii could have been colonized later than the island’s initial formation, we

calibrated the time to most recent common ancestor of these groups with a

normal distribution prior with a mean of 0.59 and a standard deviation of

0.135 mya. This creates a distribution where the most probable time of divergence

is 0.59 mya, but allows for divergence from almost the present and up to 0.9 mya

[59]. The Hawaii Island endemic clades of spoon tarsus and antopocerus species

were calibrated using this prior.

We tested the dated phylogeny for changes in diversification rate to evaluate

whether the AMC clade has undergone an increased rate of diversification.

SymmeTREE v1.1 was used to identify if there has been a change in the

diversification rate between lineages by comparing the amount of branching in the

AMC tree to the expected amount of branching under a pure Yule model [60].

Rate shifts were evaluated using the D1 statistic under default conditions with the

maximum clade credibility phylogeny obtained from the BEAST analysis with

outgroups removed. A lineage through time plot was explored in LASER v2.3 with

the pruned phylogeny. The c statistic was calculated to identify if the rate of
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lineage accumulation is slowing compared to older bursts of speciation. Since

incomplete taxon sampling is expected to simulate a slow down, we implement an

MCCR method to test if the c is still significant given the amount of missing

species in the dataset [61]. The number of missing species was estimated after the

list of described species from O’Grady et al. [18].

Ancestral State Reconstructions

To infer the ancestral range of each lineage, species was coded as being from

Hawaii, Maui Nui (including Maui, Molokai and Lanai), Oahu, or Kauai, or a

combination thereof. Species from any of the four islands that make up Maui Nui

were treated as being from one island. These islands were connected in the very

recent past and these land bridges may have facilitated dispersal between

volcanoes [62]. Despite the majority of Hawaiian Drosophila species being single

island endemics (90%) [29], a large proportion (30.7%) of the species included in

this study are found on one or more islands in Maui Nui. The range of each

species in these analyses was coded after published collection records [28–31], or,

in the case of undescribed species, our collection records. A dispersal, extinction

and cladogenesis (DEC) model was implemented in the program Lagrange to infer

the ancestral ranges of each species group [63]. Lagrange employs a likelihood

framework to infer geographical range evolution on phylogenetic trees, while

inferring rates of dispersal and local extinction. Since this analysis requires the

phylogeny to be time calibrated we used the phylogeny inferred via BEAST with

outgroup taxa pruned from the tree. The input file was formatted using the

Lagrange configurator (www.reelab.net/lagrange/configurator). Dispersal was

modeled to limit migration only between adjacent islands and, alternatively, to

allow migration to occur between any island. We allowed for ancestral ranges to

include multiple adjacent islands since several species are currently resident on

adjacent islands.

Stochastic mapping (SM), a Bayesian method that can be applied to ancestral

state reconstruction, was used to infer the ancestral states for host substrate and

secondary sexual character states. This method infers the probability of a state

change dependent on branch length and evolutionary rate and incorporates

phylogenetic uncertainty into the reconstruction of the ancestral state. SM analysis

was performed using SIMMAP 1.5 [64] on a sub-sample of 1000 trees from the

posterior distribution of trees generated by BEAST. The overall substitution rate

of each character was modeled using a gamma distribution whose priors a and b
were estimated using the two-step procedure suggested in SIMMAP 1.5. Initially

an MCMC analysis was used to sample overall rate parameter values. The results

of this analysis were analyzed with the R Statistical Package and the sumprmcmc.r

script provided with SIMMAP 1.5 to find the best fitting gamma and beta

distributions. These priors were then included in a full ancestral state

reconstruction analysis. Since diversification in host substrate use has been

implicated as a contributor to the high rate of diversification in other Hawaiian

Drosophila clades [7, 22, 23] we mapped larval host substrate onto our phylogeny.
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While not nearly as diverse as host use in other lineages, we wanted to explore this

in the AMC as a comparison to the other Hawaiian Drosophila clades. Host

substrate was identified based on known rearing records [21].

We also mapped secondary sexual characters onto the AMC phylogeny to test

whether diversity in secondary sexual characters predates or antedates a high rate

of diversification. The traits we used may be under sexual selection and are used in

mating behaviors [32, 34–37]. We infer that sexual selection may drive

diversification in the AMC if there is an increase in the diversity of these

characters correlated with a change in diversification rate of the AMC and there is

no evidence of ecological or biogeographical divergence. We coded four

dimorphic male characters for species with adequate data: 1) the presence of a

‘‘split’’ tarsus, a state which describes a foreleg with an apical lobe on the

basitarsus and a missing tarsal segment, 2) the presence of long, whip-like aristae,

3) the presence of ‘‘spoons,’’ or enlarged, concave structures present on the

second tarsal segments on the forelegs, 4) the ratio of basitarsus length to the

length of the setae on the forelegs. The continuous measures of the basitarsus to

setae length were binned into 5 categories. Characters for each species were

identified based on published species descriptions [28–31]. We mapped these

characters in the same way as we did with the larval host substrate, using Simmap

[64]. The appropriate gamma and beta distributions were estimated in the same

way as described above.

Results

Phylogenetic Inference

While individual gene phylogenies were poorly resolved (Fig. S1–S11), there was

little conflict at nodes that had high support in all genealogies. We will restrict our

discussion of relationships in this group to the partitioned, concatenated analyses

that provide the greatest resolution between taxa and a marked improvement over

previous work. The combined, concatenated analysis was an improvement over

single gene phylogenies, with most nodes resolved with high statistical support in

both the likelihood and Bayesian analyses (Fig. 2, Fig. S12). This phylogeny is also

an improvement over previous molecular analyses of these groups, in terms of

taxa inclusion and nodal support [7, 45]. The antopocerus species group, split

tarsus subgroup and spoon tarsus subgroup were each monophyletic with a

posterior probability (PP) of 1.0 and the lowest bootstrap support (BS) at 95% in

the concatenated phylogeny (Fig. 2).

The antopocerus species group was inferred as monophyletic (BS5100;

PP51.0), an unsurprising result considering the substantial morphological

differences between this species group and the modified tarsus species group [28].

Most species in the antopocerus species group are endemic to the islands of Maui

Nui, with the exception of D. cognata, D. kaneshiroi (both not included in this

analysis), D. yooni and D. tanythrix (all from Hawaii) and D. arcuata (Oahu, not

included in these analyses). The species endemic to Hawaii were sister to each
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other (BS5100; PP51.0) and nested within a paraphyletic grade of Maui

endemics (Fig. 2).

The antopocerus species group was sister to the modified tarsus species group

(BS580%, PP51.0). The modified tarsus species group is comprised of 75 species

from the spoon, bristle, ciliated and split tarsus subgroups (Fig. 2). The split tarsus

subgroup was estimated as the largest clade, with 24 described species found on all

of the main Hawaiian Islands. Like the antopocerus species group, the split tarsus

species were strongly supported as monophyletic in the concatenated analysis, and

this clade was also found in some of the individual gene analyses (Fig. S1–S2, and

S9–S10).

The split tarsus subgroup was well supported as the sister clade to what we are

calling the hirsute tarsus clade (BS578; PP51.0), a group containing the spoon

tarsus, bristle tarsus, and ciliated tarsus subgroups (BS5,50%, PP50.97). The

spoon tarsus subgroup was monophyletic (BS5100; PP51.0) and nested within a

paraphyletic grade of ciliated and bristle tarsus species. The spoon tarsus species are

united by possessing a distinctly cuplike structure with dense cilia within the

concavity on the second tarsal segment of males [24]. While the spoon tarsus

subgroup is described as containing 12 species [31], the validity of the

morphological characters that have previously included D. atroscutellata and D.

fastigata into this group has been questioned based on their indistinct ‘‘spoons’’

[24] and phylogenies containing these species have indicated that D. fastigata and

D. atroscutellata may not be part of a monophyletic spoon tarsus grouping [7, 45].

Our analyses agreed with the previous phylogenetic work and indicated that the

inclusion of D. atroscutellata and D. fastigata (included in this analysis) in the

spoon tarsus subgroup was not warranted. This reconfigured spoon tarsus

subgroup was strongly supported as monophyletic (BS599; PP51.0). This group

was nested within a paraphyletic grade of ciliated and bristle tarsus species.

The remaining taxa placed in the hirsute tarsus clade, all members of the bristle

and ciliated tarsus subgroups all share elongate setae on the forelegs of males. The

bristle tarsus subgroup displays a clump of stiff bristles at the apex of the

basitarsus, with some taxa also possessing an expanded or widened first tarsal

segment. In contrast, the ciliated tarsus subgroup is characterized by more diffuse

bristles along the tarsal segments on the forelegs of the males without any

expansion or thickening of the tarsal segments. These two species groups were not

reciprocally monophyletic. Instead, they comprised a paraphyletic grade of species

including the monophyletic spoon tarsus subgroup. The chaetotatic characters

used to define the ciliated and bristle tarsus species groups are not diagnostic

taxonomically. This was not surprising given that elongate cilia on the forelegs of

males are found throughout the Hawaiian Drosophilidae (e.g., [29]). Most of the

bristle tarsus species that exhibit the most distinctive morphology, including a

dorsal and an anterior row of sinuate, spinose setae, group into a single strongly-

supported clade. These include D. apodasta, D. basimacula, D. expansa, and

D. perissopoda. This clade includes other species that display a more poorly-

defined bristling, such as D. prodita. However, two species with basitarsal

bristle morphology virtually identical to that found in the group containing
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D. apodasta - D. petalopeza and D. quasiexpansa - fell out separate from both the

main grouping and from each other, indicating strong convergent evolution in

this trait.

Dating and Rate of Diversification

The analysis converged quickly as indicated by an ESS well over 1000 for most

parameters and greater than 500 for all others [56]. These analyses suggested that

the AMC started diversifying about 4.4 mya, when the ancestors of the

antopocerus and modified tarsus species group diverged (Fig. 2, Table 2). The split

tarsus and the remainder of the modified tarsus taxa diverged about 3.3 mya

Table 2. Ages of Major Lineages.

Node Node Age (95% HPD)

Hawaiian Drosophilidae 25.15 (23.90 – 27.46)

Hawaiian Drosophila 9.14 (6.57 – 11.82)

AMC 4.40 (3.45 – 5.45)

antopocerus species group 2.48 (1.81 – 3.24)

modified tarsus species group 3.69 (2.90 – 4.51)

split tarsus subgroup 3.22 (2.54 – 3.96)

hirsute tarsus subgroup 3.44 (2.72 – 4.22)

spoon tarsus subgroup 1.84 (1.32 – 2.43)

Ages of major lineages, species groups and subgroups estimated by BEAST. Important ages with 95%
highest posterior densities. Refer to Figure 2 to identify nodes.

doi:10.1371/journal.pone.0113227.t002

Figure 3. Lineage through time plot. Lineage through time plot of Maximum clade credibility tree in
red. Lineage through time plot of 1000 post burn in topologies from the BEAST analysis in black.

doi:10.1371/journal.pone.0113227.g003
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Figure 4. Ancestral state reconstructions. Ancestral state reconstructions of larval host substrate and
secondary sexual characters in the AMC. Ancestral range reconstruction estimated under a DEC model
and the most likely range is plotted on each node. Pie charts on nodes indicate probability of each state in
same order as they are presented to the right of the phylogeny.

doi:10.1371/journal.pone.0113227.g004
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(Fig. 2, Table 2). Divergence times within in the remainder of the AMC clade are

listed in Table 2.

SymmeTREE indicated a significant D1 (p50.01) increase in the rate of

diversification at the base of the hirsute tarsus clade (Fig. 2). Additionally, the c

statistic was found to be significant (p50.001), suggesting that the rate of

diversification has slowed closer to the tips of the tree from a high rate deeper in

the topology. Lineage growth was qualitatively examined in the lineage through

time plot (Fig. 3). The lineage through time plot displays an initially high rate of

diversification at the base of the AMC phylogeny, that tapers off as time

progresses. This pattern is predicted to indicate an adaptive radiation: The initial

burst may be due to increased available resources, and the later slow down is

expected to be caused by a decrease in available resources as more species compete

over them [65].

Ancestral State Reconstructions

The restricted and unrestricted migration models run in the Lagrange analyses

produced identical results at all nodes of interest. These results suggest that the

AMC clade, as well as several component lineages with this group (e.g., the split

tarsus and antopocerus clades), originated in the islands of Maui Nui (Fig. 4). The

ancestral range of the spoon tarsus subgroup was identified as Maui Nui or Hawaii.

The Hawaiian Islands are arranged in chronological order, with the oldest

islands in the northwest, becoming progressively younger to the southeast. This

has led to a general pattern in Hawaiian biogeography known as the progression

rule [40, 41]. As new islands form, taxa from older neighboring islands can

colonize them, leading to clades that have diversified ‘‘down’’ the chain. Basally

branching lineages are found on older islands and more recently derived clades are

found on younger islands. There were few clades of AMC species that followed a

pattern of diversification predicted by the progression rule, contrary to what is

displayed by many lineages in the Hawaiian Islands [4, 14, 27, 42, 66]. There was a

Hawaiian Island clade of antopocerus nested within a Maui Nui clade. The

Hawaiian spoon tarsus species were reconstructed as sister to the Maui Nui

species. The clades of ciliated tarsus endemic to Kauai displayed extensive

radiation and were derived from within lineages that are strongly supported as

originating on Maui or Hawaii, the reverse from what is expected from the

progression rule. These reconstructions are in conflict with the divergence dates

we have estimated and we attempt to reconcile the findings below.

There is little variation in the ecological breadth of AMC species (Fig. 4). The

majority of species with known oviposition and larval substrate utilize leaves from

plants in the genus Cheirodendron in the family Araliaceae. The inferred ancestral

state for every species group was reconstructed as larval utilization of Araliaceae

leaves as a substrate (PP>85%). The next most commonly used family of plants is

Aquifoliaceae, but the transition to this host was inferred to have occurred only

rarely – in our analyses all three times in the hirsute tarsus clade. There were at

least two more transitions to Aquifoliaceae in the antopocerus species group
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(antopocerus species D. cognata and D. entricocnema, which belong to different

complexes within the group, are not included in this phylogeny). The switch to

utilizing Aquifoliaceae characterizes sister clades in the spoon tarsus subgroup, and

predates the colonization of the Island of Hawaii. Transitions to other host

substrates have occurred sporadically.

The majority of species groups diagnosed by a secondary sexual character were

reconstructed as monophyletic and had ancestral nodes reconstructed with a high

probability as having the same male secondary character morphology that defines

the group (long antennae on antopocerus, spoons on the spoon tarsus and an apical

lobe on the basitarsus of the split tarsus coincided with a PP.99%) (Fig. 4).

However, the reconstructions identified a very low likelihood for any of these

traits being present in ancestral AMC nodes (PP,1%), and none that correlated

with the emergence of the hirsute tarsus clade. Likewise, the basitarsus to setae

ratio showed little signal with the hirsute tarsus clade reconstructed as most having

the most common ratio found throughout the AMC.

Discussion

AMC systematics

Our phylogeny is an improvement over recent studies of Hawaiian Drosophila

phylogenetics that featured representatives of the AMC clade [7, 16, 67], due to

this study’s increased taxonomic and molecular sampling. We have resolved the

relationships between the major species groups of the AMC with more resolution

and statistical support than any molecular analysis to date (Fig. 1A and B, and

Fig. 2). The relationships between the groups differ slightly from morphological

predictions (Fig. 1A). This is the first analysis that is able to infer with strong

support that the antopocerus species group is sister to the rest of the AMC, and

that the split tarsus subgroup is sister to the hirsute tarsus clade. Additionally our

study finds the antopocerus species group, split tarsus and spoon tarsus subgroups

are monophyletic, in agreement with previous molecular [7, 38, 39, 45] and

morphological hypotheses [28–31]. While the ciliated tarsus and bristle tarsus

subgroups are morphologically distinguishable [29, 33] these analyses support the

idea these subgroups are close relatives [7, 39] and are unable to recover these

them as reciprocally monophyletic. We predict this lack of resolution between the

two subgroups is the result of rapid divergences at the base of the hirsute tarsus

clade that could not be resolved, and the diversification rate analyses corroborate

this. While it is possible that hybridization and incomplete lineage sorting have

caused conflict between the unlinked loci, examination of individual genealogies

suggests that the poor support at the base of the hirsute tarsus clade is due to an

apparent lack of phylogenetically informative characters (Fig S1–S11). Within

each species group we infer relationships that are congruent with many of the

previous molecular and morphological hypotheses [7, 28–30, 45].
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Divergence dating and Biogeography of the AMC

The Hawaiian Drosophilidae (Hawaiian Drosophila and Scaptomyza) are

hypothesized to have descended from a single colonization event on the Hawaiian

Archipelago and quickly diverged and radiated [16, 33, 68–71]. Divergence times

within the Hawaiian Drosophila have been subsequently dated under a variety of

assumptions [10, 15, 16, 67, 72]. Using a combination of biogeographic and

external calibrations, we inferred similar dates of divergence as [10] and [16] and

some dates inferred by [67]. Different calibrations and taxa were used in all three

studies, which may have led to this discrepancy. While any molecular divergence

dating should be interpreted with caution we are confident that due to the use of

well known island ages [58], external calibration points from other Drosophilidae

studies, and an expanded sampling of AMC taxa, the dates in this study provide

the best estimates of a timeline of diversification within the AMC to date. We

estimate that the extant lineages of Hawaiian Drosophila started diversifying about

nine mya (95% HPD 6.57/11.82 mya) (Fig. 2). This is a period of high

topographic diversity, when the islands Gardner and Necker Islands, now both

nearly submerged, were both large in area with multiple islands between them [9].

Given that the other lineages diverged when Gardner and Necker were high,

followed by a lack of lineage formation in the AMC until the emergence of the

island of Kauai, we propose that diversification in the Hawaiian Drosophila may

have been episodic, with species diversity associated with topographic diversity.

Two dated molecular phylogenies have included more than one AMC species

[16, 67] and while [67] infers dates older than this study by four million years,

[16] infers similar ages. The crown of the antopocerus species group diversified

approximately 2.4 mya, at about the same time that the oldest islands of Maui Nui

were in the midst of shield building [62]. This corresponds with the inferred

ancestral range in Lagrange and corroborates earlier predictions of how the

antopocerus species group diverged [28]. The split tarsus diverged from the rest of

the hirsute tarsus subgroup about 3.5 mya, and both started diversifying about

three mya, around the time of the formation of the island of Oahu. The youngest

subgroup in the AMC, the spoon tarsus, started to diversify around 1.8 mya, likely

on Maui Nui, and had since colonized and diversified on the Island of Hawaii.

The Hawaii Island endemics in this group split into two lineages before the island

of Hawaii was habitable (,0.9 mya) and ancestral lineages on Maui may have

since gone extinct.

The phylogeography of Hawaiian clades may recapitulate the progression rule,

where older lineages are found on older islands and younger lineages on younger

islands. This pattern is a paradigm in Hawaiian biogeography [27, 41, 73], but one

that is not strictly observed [58, 74]. However, the ancestral range reconstructions

do not reproduce this pattern in many lineages in the AMC (Fig. 2). Even though

the timing of the AMC divergence is estimated as occurring on the older Hawaiian

high islands (Kauai and Oahu), the ancestral range reconstruction identifies that

most of the diversification occurred on the younger islands (Maui Nui and

Hawaii). Similar to the haleakalae species group, we did not observe a pattern of
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progression down the island chains in many clades [7, 46]. This differs from the

planitibia and other picture wing species groups where this pattern is clearly

observed [22, 27].

Conflict between ancestral range reconstructions and dating of divergences is

documented [66] and we interpret our results expecting the ancestral range

reconstructions to inform patterns of diversification and biogeographic events

extrapolated from our dating analyses. We hypothesize that a lack of a distinct

biogeographic pattern in our range reconstructions may be the result of two

processes. First, recent extinctions or incomplete species sampling on Kauai and

Oahu are possible given the widespread habitat loss in recent and historic times,

especially on Oahu. This is likely to have occurred on some level and will influence

our reconstructions; in particular, the absence of the Oahu representative of the

antopocerus species group and three of the four Oahu split tarsus species may affect

the analyses. Alternatively, these results may be the product of ancient extinctions

in basal taxa of each lineage following rapid diversification of the extant clades on

Oahu and/or Maui Nui. This hypothesis is supported by the placement of the

well-sampled Kauai AMC species as highly derived and comprised mainly of two

clades, one of bristle tarsus species and one in the split tarsus subgroup (Fig. 4),

indicating infrequent back-colonization from younger islands followed by within-

island speciation. Likewise, all sampled Oahu species are derived within their

respective clades. Maui Nui has been separated and connected multiple times in

the islands approximately two million year history, most recently connected

during the last glacial maximum [62]. This has alternately led to a high degree of

topographic diversity and increased area, followed by periods of isolation between

volcanic mountains, which are expected to promote speciation [75, 76]. A large

proportion of the known AMC diversity is found on the islands of Hawaii and

Maui Nui (79%) [29] and Maui Nui has been hypothesized to be a crucible of

diversity in Hawaiian lineages [77]. Likely a combination of these factors has

influenced our range reconstructions to some degree.

Drivers of diversification

Since we were able to resolve the relationships with high support between many of

the AMC species groups we can test hypotheses of what has led to the

diversification between these groups for the first time. The difficulty in resolving

the relationships between the bristle and ciliated tarsus subgroups, in spite of the

use of multiple nuclear and mitochondrial markers, indicates that these taxa

underwent a rapid radiation (Fig. 2), which is corroborated by our analysis. Most

of the diversification within the AMC occurred recently, within the past , 3 my,

which would explain previous difficulty in inferring the relationships between the

AMC lineages. Like other rapid radiations (e.g. [78–80]) Hawaiian Drosophila

lineages are poorly resolved or lack support at the basal nodes despite increasing

taxonomic and molecular sampling [7, 27, 38, 39, 46]. This rapid radiation may be

due to an increase in speciation rate or a decrease in extinction rate. The change in

the rate of speciation indicates that something in the environment or biology of
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the lineage changed. Based on previous studies on Hawaiian Drosophila, we

predict three factors may have driven this diversification: (1) The hirsute tarsus

subgroup may have expanded their host range to exploit a previously unused

resources that allowed them to adaptively radiate across the Hawaiian Islands; (2)

novel secondary sexual characters provide new substrates for sexual selection to

drive divergence; (3) around the time the hirsute tarsus clade started to diversify

there was an increase in available landscape – the current high islands were

forming and increased topographic diversity has been shown to increase

biodiversity in other Hawaiian lineages [4, 81]. This may be due to the availability

of open niches reducing the extinction rate or an increased speciation rate as new

niches become available. We consider each of these possibilities below.

The picture wing, ateledrosophila and nudidrosophila (PNA) clade utilizes several

families of plants [7, 21] and diversification in this group may be linked to

adaptation to different plants used as oviposition sites [23]. The diverse modified

mouthpart clade also exploits a wide range of host plant families [7]. This

expansion of resource use has helped to define the Hawaiian Drosophila as an

adaptive radiation [65], but is not a universal trait of the entire clade. Indeed, we

confirm that host use divergence is unlikely to have driven the diversification in

the AMC clade since species in this group display a nearly uniform ecological

lifestyle across the Hawaiian Islands: larvae from almost all species use the

decaying leaves of species from the family Araliaceae as a substrate [21]. The

transition to utilizing Aquifoliaceae leaves has occurred multiple times in the

AMC, but does not appear to lead to increased diversity. This is in contrast with

other diverse Hawaiian Drosophila clades and leads us to expect that the AMC

may have diversified for other reasons.

Sexual selection has likely influenced speciation in the AMC. This is evidenced

by the diversity of morphologies [28–31], behaviors [32, 34–37] and chemical

signaling [82] that are associated with sexual selection and described in species of

the AMC. Geographic isolation followed by a random and slight change in the

way these secondary sexual characters are used could cause pre-mating isolation

when sister species of Hawaiian Drosophila came back into contact with each other

[83, 84] and secondary sexual characters have been shown to be important in mate

choice [43]. The males of many AMC will vibrate and semaphore their wings in

species distinctive patterns in the vicinity of conspecific females [32, 34].

Courtship song and cuticular hydrocarbons are diverse and stereotypical to

species in the Hawaiian Drosophila and are likely used in identifying conspecific

mates in the AMC [82, 85–87]. In at least the antopocerus group there are

sophisticated structures for sensing these traits [88].

While many of these traits are very well characterized in a few AMC species,

they are not known widely across the AMC lineage. This has led us to focus on the

well defined eponymous morphological characters of each AMC species group,

which are used in sexual displays and mating behaviors [29, 32]. We confirm these

traits as being diagnostic for different species groups with high confidence for the

first time (Figure 4). The hirsute tarsus clade is identifiable by a suite of different

secondary sexual characters, but none that arose coincidently with the increase in
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diversification rate seen in this group. The ancestral node of the hirsute tarsus

clade is reconstructed as having a bristle length to tarsus length most commonly

found in all AMC groups, including those outside of the hirsute tarsus clade. We

do not exclude the possibility of sexual selection driving an increase in the rate of

diversification in the AMC, but also do not find support in the secondary sexual

character data we explored. The evolution of complex secondary sexual characters

can be rapid, especially in Hawaiian Drosophila [89], and in many other

Drosophila species [86, 90, 91]. Future research characterizing the cuticular

hydrocarbons and mating behaviors of these species could provide support for the

importance of sexual selection in driving AMC speciation.

The AMC are inferred to have started diversifying around 4.40 mya (95% HPD

3.45/5.45 mya), which broadly corresponds with when Kauai would have been

mature, and thus had wet forest habitat and topographic diversity, similar to

Maui, but prior to Oahu and after other islands had largely sunk (i.e. it was the

only big island). The later increase in rate of diversification associated with the

hirsute tarsus clade is associated with the emergence of the island of Oahu

3.44 mya (95% HPD 2.72/4.22 mya). Increased area and topographic diversity in

islands is expected to drive high levels of diversification [4, 75] and speciating

down the island chain may have driven the AMC, and more specifically the hirsute

tarsus clade’s, diversity. While the oldest subgroup in the modified tarsus species

group, the split tarsus, includes a large portion of species from Kauai, the oldest

lineage in the AMC, the antopocerus, are found almost entirely on the islands of

Maui Nui. The spatial heterogeneity this island group has recently experienced

may also lead to AMC diversity. Given the timing of speciation events, the

diversification of the AMC lineage may be the result of the emergence of a

heterogeneous landscape that included Oahu and Maui Nui in addition to Kauai.

This does not preclude other factors from influencing diversification rates within

clades of AMC, and by identifying the dating of events such as the arrival of the

genus Cheirodendron to the islands, and the mating behaviors of these species

groups we can further test many of these hypotheses.

Supporting Information

Figure S1. Mitochodrial phylogeny. Bayesian topology shown. Black dots at

nodes indicate posterior probabilities . 0.9 and RAxML bootstrap values . 70.
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Figure S2. Fz4 genealogy. Bayesian topology shown. Black dots at nodes indicate
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Figure S3. Snf genealogy. Bayesian topology shown. Black dots at nodes indicate

posterior probabilities . 0.9 and RAxML bootstrap values . 70.
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Figure S4. Yp1 genealogy. Bayesian topology shown. Black dots at nodes indicate
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Figure S5. Yp2 genealogy. Bayesian topology shown. Black dots at nodes indicate
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Figure S6. Kl-2 genealogy. Bayesian topology shown. Black dots at nodes indicate

posterior probabilities . 0.9 and RAxML bootstrap values . 70.
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Figure S7. Boss genealogy. Bayesian topology shown. Black dots at nodes indicate

posterior probabilities . 0.9 and RAxML bootstrap values . 70.
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Figure S8. Ef1-g genealogy. Bayesian topology shown. Black dots at nodes

indicate posterior probabilities . 0.9 and RAxML bootstrap values . 70.
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Figure S9. Ntid genealogy. Bayesian topology shown. Black dots at nodes indicate

posterior probabilities . 0.9 and RAxML bootstrap values . 70.
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Figure S10. Pds5 genealogy. Bayesian topology shown. Black dots at nodes

indicate posterior probabilities . 0.9 and RAxML bootstrap values . 70.
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Figure S11. Wee genealogy. Bayesian topology shown. Black dots at nodes

indicate posterior probabilities . 0.9 and RAxML bootstrap values . 70.
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Figure S12. Maximum likelihood topology. Values on nodes are bootstrap

support.

doi:10.1371/journal.pone.0113227.S0012 (EPS)

Table S1. List of individuals with mitochondrial sequences. Barcode refers to

O’Grady Lab bar-coding conventions and can be referred to identify full collection

details. EM Barcode refers to voucher label associated with the sample provided by

the Essig Museum of Entomology. Island refers to island where individual was

collected. FB indicates sequences downloaded from FlyBase.

doi:10.1371/journal.pone.0113227.S0013 (XLSX)

Tables S2. List of individuals with nuclear sequences. Barcode refers to O’Grady

Lab bar-coding conventions and can be referred to identify full collection details.

FB indicates sequences downloaded from FlyBase. ST3 indicates which of the

three sequences that are too short to be deposited onto GenBank (,200 bp) are

included in Table S3.

doi:10.1371/journal.pone.0113227.S0014 (XLSX)

Table S3. Bride of sevenless (boss) sequences too short to deposit onto GenBank.
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Table S4. Partitions and their associated substitution models. Models listed

here were used in Bayesian analyses.
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78. Castañeda MdR, de Queiroz K (2011) Phylogenetic relationships of the dactyloa clade of anolis lizards
based on nuclear and mitochondrial DNA sequence data. Molecular phylogenetics and evolution 61:
784–800.

79. Wagner CE, Keller I, Wittwer S, Selz OM, Mwaiko S, et al. (2013) Genome-wide RAD sequence data
provide unprecedented resolution of species boundaries and relationships in the lake Victoria cichlid
adaptive radiation. Molecular ecology 22: 787–798.

80. Bennett GM, O’Grady PM (2012) Host plants shape insect diversity: Origins, diversity, and host plant
associations of the native Hawaiian leafhoppers (cicadellidae: Nesophrosyne). Molecular Phylogenetics
and Evolution 65: 705–717.

81. Jordan S, Simon C, Foote D, Englund RA (2005) Phylogeographic patterns of Hawaiian megalagrion
damselflies (odonata: Coenagrionidae) correlate with pleistocene island boundaries. Molecular Ecology
14: 3457–3470.

82. Alves H, Rouault J, Kondoh Y, Nakano Y, Yamamoto D, et al. (2010) Evolution of cuticular
hydrocarbons of Hawaiian Drosophilidae. Behav Genet 40: 694–705.

Phylogeny of the AMC Clade of Hawaiian Drosophila

PLOS ONE | DOI:10.1371/journal.pone.0113227 November 24, 2014 24 / 25



83. Kaneshiro KY (1976) A revision of the generic concepts in the biosystematics of Hawaiian
Drosophilidae. Proceedings of the Hawaiian Entomological Society 22: 255–278.

84. Kaneshiro KY (1983) Sexual selection and direction of evolution in biosystematics of Hawaiian
Drosophilidae. Annual Review of Entomology 28: 161–178.

85. Hoy RR, Hoikkala A, Kaneshiro K (1988) Hawaiian courtship songs: Evolutionary innovation in
communication signals of Drosophila. Science 240: 217–219.

86. Hoikkala A, Kaneshiro KY, Hoy RR (1994) Courtship songs of the picture-winged Drosophila planitibia
subgroup species. Anim Behav 47: 1363–1374.

87. Tompkins L, McRobert SP, Kaneshiro KY (1993) Chemical communication in Hawaiian Drosophila.
Evolution 47: 1407–1419.

88. Kondoh Y, Kaneshiro KY, Kimura KI, Yamamoto D (2003) Evolution of sexual dimorphism in the
olfactory brain of Hawaiian Drosophila. Proceedings of the Royal Society of London. Series B: Biological
Sciences 270: 1005–1013.

89. Carson H, Kaneshiro K, Val F (1989) Natural hybridization between the sympatric Hawaiian species
Drosophila silvestris and Drosophila heteroneura. Evolution 43(1): 190–203.

90. Kopp A (2011) Drosophila sex combs as a model of evolutionary innovations. Evol Dev 13: 504–522.

91. Tanaka K, Barmina O, Sanders LE, Arbeitman MN, Kopp A (2011) Evolution of sex-specific traits
through changes in HOX-dependent doublesex expression. PLoS biology 9: e1001131.

Phylogeny of the AMC Clade of Hawaiian Drosophila

PLOS ONE | DOI:10.1371/journal.pone.0113227 November 24, 2014 25 / 25


	Figure 1
	Figure 2
	TABLE_1
	TABLE_2
	Figure 3
	Figure 4
	Reference 1
	Reference 2
	Reference 3
	Reference 4
	Reference 5
	Reference 6
	Reference 7
	Reference 8
	Reference 9
	Reference 10
	Reference 11
	Reference 12
	Reference 13
	Reference 14
	Reference 15
	Reference 16
	Reference 17
	Reference 18
	Reference 19
	Reference 20
	Reference 21
	Reference 22
	Reference 23
	Reference 24
	Reference 25
	Reference 26
	Reference 27
	Reference 28
	Reference 29
	Reference 30
	Reference 31
	Reference 32
	Reference 33
	Reference 34
	Reference 35
	Reference 36
	Reference 37
	Reference 38
	Reference 39
	Reference 40
	Reference 41
	Reference 42
	Reference 43
	Reference 44
	Reference 45
	Reference 46
	Reference 47
	Reference 48
	Reference 49
	Reference 50
	Reference 51
	Reference 52
	Reference 53
	Reference 54
	Reference 55
	Reference 56
	Reference 57
	Reference 58
	Reference 59
	Reference 60
	Reference 61
	Reference 62
	Reference 63
	Reference 64
	Reference 65
	Reference 66
	Reference 67
	Reference 68
	Reference 69
	Reference 70
	Reference 71
	Reference 72
	Reference 73
	Reference 74
	Reference 75
	Reference 76
	Reference 77
	Reference 78
	Reference 79
	Reference 80
	Reference 81
	Reference 82
	Reference 83
	Reference 84
	Reference 85
	Reference 86
	Reference 87
	Reference 88
	Reference 89
	Reference 90
	Reference 91

